CNR participates in EPTRI-IT with the following 13 Institutes:
CNR participates in EPTRI-IT with the following 13 Institutes:
The main research activities concern the structural and functional characterization of known or newly identified genes and proteins, involved in mitochondrial biogenesis and energy metabolism, particularly the respiratory chain complexes and mitochondrial carriers, the cellular regulation of these systems and their role in cellular homeostasis, the role of mitochondria in cell differentiation and apoptosis, and mitochondrial alterations in both hereditary and degenerative aging.
EPTRI-related research activities:
The IBPM research is mainly focused on biological macromolecules and bioactive compounds approached through experimental and computational methods to identify macromolecular targets and determine their 3D structure, dynamics, regulation, function and evolution. Moreover, peptide and organic molecules able to modulate the activity of proteins and nucleic acids involved in cancer, neurodegeneration and other human pathologies are computationally designed, chemically synthesized and characterized for their physical-chemical, biochemical and cellular properties. Another research area of IBPM focuses on the study of gene expression regulation during normal cell differentiation, development and disease. The researchers of IBPM study also physio-pathogenic mechanism in differentiation, specifically in terms of the molecular mechanisms underlying human physiology to discover how their deregulation drives to pathological conditions.
EPTRI-related research activities:
Expertise:
The researchers are deeply involved in carrying out research programs and projects on translational pharmacology with a wide spectrum of preclinical and translational investigations aimed at understanding the complex mechanisms of disease and related targeted therapy action, with a particular attention to cancer, neurological disorders, infectious and inflammatory diseases, and to their application in clinical practice.
EPTRI-related research activities:
Facilities and Research Infrastructure
The mission of the CNR Neuroscience Institute (IN) is to promote the comprehensive knowledge of structural and functional aspects of the nervous system. In particular, the research activity of the IN-CNR is strongly devoted to developmental neurobiology and aims at increasing our knowledge on pathogenic mechanisms that underpin the etiology of pediatric brain disorders. Milano and Cagliari sections of the IN have a strong background on cellular biology and pharmacology applied to neuroscience. The main goal of their studies is to understand how genetic defects or environmental insults perturb neuronal circuit formation and maturation, ultimately resulting in neurodevelopmental disorders, such as intellectual disability (Angelman syndrome), autism spectrum disorders (Rett and Phelan-McDermid syndromes), schizophrenia, epilepsy (CDKL5, Dravet and PCDH19 syndromes) and immune synaptopathies (MIA, poly I: C, IL6 and IL1 models). The section of Pisa has a long-standing tradition in the visual system and its functional architecture, and in pathological conditions of the retina and visual cortex, as well as in metabolic syndromes of pediatric onset (creatine transporter deficiency syndrome). Interdisciplinary and complementary approaches, ranging from electrophysiology, genetic and biochemistry to advanced imaging and behavior are exploited to dissect the molecular bases of these as-yet incurable diseases, discover novel disease biomarkers and test innovative therapeutic strategies.
Facilities and Research Infrastructure:
The IN is a leading institution in the field of pre-clinical neuroscience. The available technical and scientific knowledge, combined with the state-of-the-art instruments, ensures high quality research products. The wide portfolio of facilities comprises setups for in vitro and in vivo electrophysiological studies, advanced imaging including intravital, super-resolution (STED) and electron microscopy, reprogramming of patient-derived induced pluripotent stem cells (iPSCs) and generation of human neurons, fully equipped surgical (e.g., stereotaxic injection and intero electroporation) and behavioral testing rooms, flow cytometry and animal houses.
The combination of design and testing expertise, both in vitro and in vivo, of new diagnostic and therapeutic agents with expertise in multiple imaging modalities provide the interdisciplinary bases to carry out a truly innovative research in the field of molecular imaging and personalized therapy. The IBB has a consolidated experience in the research of biomarkers of various pathologies, design and synthesis of molecules able to interact with certain biomarkers and preclinical validation of the molecules developed. Another research area developed by IBB is e-health to create open-source software systems, consisting of models, services and tools to support diagnosis, therapy and follow-up, as well as for the innovative management of health processes.
EPTRI-related research activities:
Identification, production and biochemical and structural characterization of Paediatric Target Proteins; HT biophysical and biochemical screening; synthesis and validation of New Molecular Entities and libraries; in vivo studies.
Several research projects of paediatric interest, including:
Facilities and Research Infrastructure
The IGB-ABT research aims at understanding the molecular basis controlling genetically and epigenetically the cell state and cell identity during embryonic development and post-natal life in normal and pathological conditions. Main activities consist of studies of human genetics, stem cell biology, embryogenesis and organogenesis, neurobiology, angiogenesis, immunology, molecular oncology. EPTRI-related research activities:
Facilities and Research Infrastructure:
The main research topics are: advanced morphology, imaging and microscopy, biosensors; biochemistry; cell and molecular biology focused on intracellular signaling in cancer and rare diseases; immunology; molecular oncology and pathology with the aims of identification of molecular targets and drug development; murine models; biology and pathology muscle-related; neurobiology and pharmacology.
EPTRI-related research activities:
Several research projects of paediatric interest, including:
Facilities and Research Infrastructure:
The mission of the Institute for Experimental Endocrinology and Oncology (IEOS) “G. Salvatore” is to improve the knowledge in the fields of Metabolism, Immunology and Oncology and to favour synergies among these different themes to create opportunities for translational biomedical research.
EPTRI-related research activities:
EPTRI-related research activities encompass, the study of cellular and molecular processes at basis of pathogenetic mechanisms of immunological, metabolic and oncologic diseases; identification of circulating biomarkers in paediatric diseases, including type 1 diabetes (T1D), paediatric cancers (eg. glioblastoma and acute lymphoblastic leukemia) and neurodegenerative (Ataxia Telangiectasia).
Facilities and Research Infrastructure:
The main research areas range from neuroscience to rare diseases through molecular and cellular biology and biotechnology, and genomic precision therapy. The mission of IRIB is the development of new diagnostic approaches and innovative therapeutic solutions. Basic science studies are flanked by an intense clinical activity in the fields of pneumology and rare genetic diseases including lysosomal storage disorder. A biobank is also available which collects more than 8000 DNA samples from patients with different genetic diseases and 12000 cell lines.
EPTRI-related research activities
Facilities and Research Infrastructure:
Major skills:
Data bank management: -Collection of biological samples (maternal and cord blood, placental tissue, peripheral blood mononucleated cells, fibroblasts, lymphoblasts, etc) also by non-invasive techniques (exhaled breath condensate, nasal lavage, exhaled nitric oxide etc); -DNA sample by non-invasive methods (buccal brush of asthmatic children); DNA sample for DNA polymorphisms of rare diseases (lysosomal storage diseases: Fabry, Pompe and Gaucher) in peripheral blood.
Its goal is understanding the causes and the mechanisms underlying diseases with a genetic component, both with simple and complex pattern of inheritance. The research projects analyse the consequences of genetic variation, up to the sequence of the whole genome, on phenotypes of biomedical relevance, with subsequent follow-up targeted functional studies both in vitro and in vivo in appropriate animal models. Particular emphasis is given to analysis of the structure of the study populations and to the joint analysis of discrete traits (diseases) and continuous quantitative traits (or endophenotypes) related to the diseases of primary interest and examined in large cohorts of thousands of individuals.
Research Areas
Milano
Cagliari:
Sassari:
Facilities and Research Infrastructure
Cagliari:
Milano:
Sassari:
The research projects of the institute are on omics technologies, bioinformatics, stem cell research, oncology, neurodegenerative disorders, human microbiome and bioethics. The ITB works to translate the fundamental scientific discoveries into new technologies.
EPTRI-related research activities:
Different diseases with onset in pediatric ages are under investigation, such as Multiple Sclerosis, Spinal Muscular Atrophy, Attention Deficit/Hyperactivity Disorder, Autism, Wiskott–Aldrich syndrome, Duchenne dystrophy, and others. The main ITB activities are addressed to pediatric medicine discovery, search of biomarkers, developmental pharmacology. The expertise involved are here summarized:
Facilities:
It is a multidisciplinary center for the study of both normal and pathological cells with a systemic approach. Their research is focused on understanding the molecular mechanisms underlying various pathological conditions such as cancer, premature aging, genetic diseases and viral infections. The approach consists in the study of the alterations of the genome and how these affects cellular metabolism, and the coordinated functions between cells of tissues and organs.
EPTRI-related research activities:
Facilities and Research Infrastructures
Facilities:
biobank of cell and tissue paediatric samples from laminopathic patients and myopathies (BioLaM, Bologna) and collection of paediatric bio-samples from NER-defective patients (Pavia).
Major skills:
EPTRI-related research activities:
CNR NANOTEC develops different technological platforms with important implications in pediatrics.
The main research areas are:
Facilities and Research Infrastructures
CNR-NANOTEC (http://nanotec.cnr.it) is a multidisciplinary research center with more than 200 researchers from physics, chemistry, biology, medicine and engineering. The main divisions are i.) Advanced Devices, ii.) Materials Science, iii.) Modeling and Computation, iv.) Nano-Biotechnology, v.) Photonics & Optoelectronics, vi.) PlasmaCheM.
The institute boasts state of the art instrumentation for nanofabrication and characterization, including a fully equipped biology lab. Collaborators include Imperial College, Cambridge University, Maastricht University, San Raffaele Hospital, Pediatric Hospital Bambino Gesù, EBRI Institute. Nearly all research activities are supported from external funds, among which are several awards from the ERC and AIRC.